US-89 Page Roundabout

ARNA Engineering Aria Asgharzadeh, Ruoxi Zhu, Nikolaus Jacob

CENE 486C 12/3/2021

Figure 1: Aerial View of Study Intersection, Image Credit Google Earth

Project Information

Client: Nate Riesner, ADOT Technical Advisor: Brendan Russo Grading Instructor: Bridget Bero

Figure 2: Location of Page within Arizona

Figure 3: Location of Project within Page

Tasks

- Obtain Existing Data
- Hydrology Assessment
- Roundabout Selection & Design
 Project Impacts

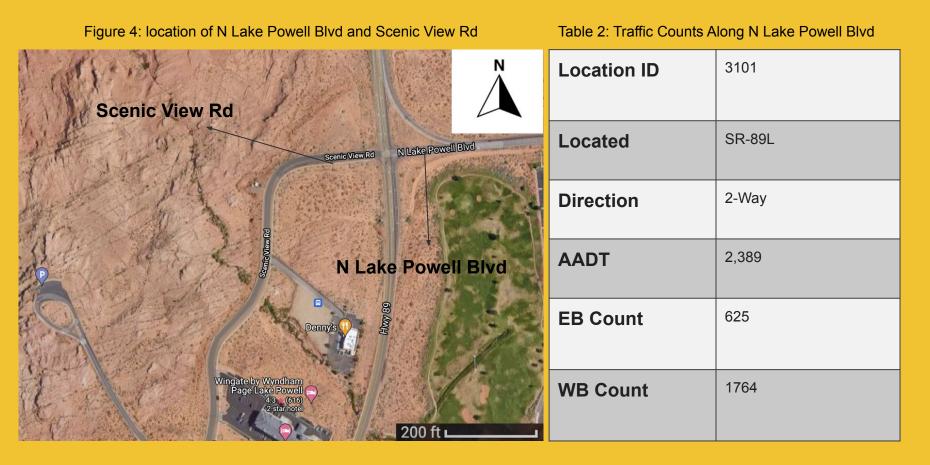

Existing Traffic Data Along US 89

Figure 3: Location of US 89

 Table 1: Traffic Counts Along US 89

Existing Traffic Data Along N Lake Powell Blvd

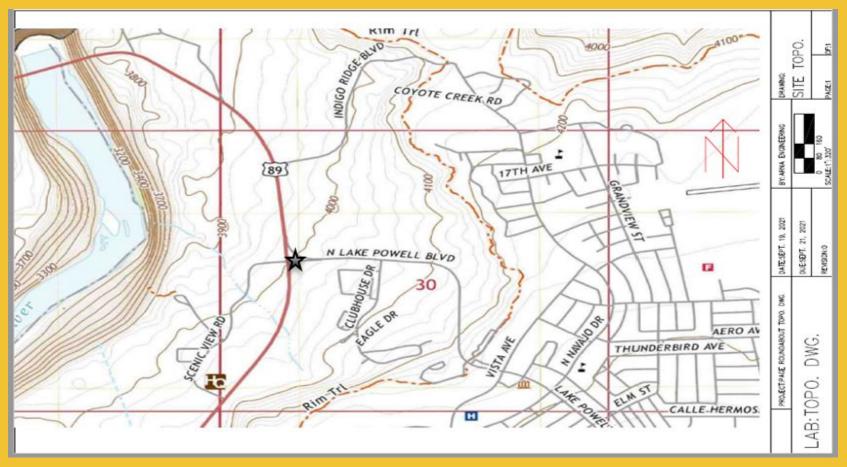
Existing and Future Turning Movements

 Table 3: Estimated Turning Movement Volumes

Table 4: 2040 Estimated Turning Movement Volumes

Approach	Movement	Turning %	Volume	Approach	Movement	Turning %	Volume
	Left	15	508		Left	15	948
NB US 89	Thru	60	2030	NB US 89	Thru	60	3791
	Right	25	846		Right	25	1580
SB US 89	Left	30	1043		Left	30	1973
	Thru	50	1738	SB US 89	Thru	50	3288
	Right	20	695		Right	20	1315
WB N Lake Powell Blvd	Left	35	617		Left	35	1210
	Thru	20	353	WB N Lake	Thru	20	691
	Right	45	794	Powell Blvd	Right	45	1555
EB Scenic View Rd	Left	40	250		Left	40	1395
	Thru	15	94	EB Scenic	Thru	15	523
	Right	45	281	View Rd	Right	45	1570

Future (2040)


City Codes & Standards

Arizona Department of Transportation Roadway Design Guidelines ADOT Traffic Engineering

Coconino County Engineering Design and Construction Manual

Topographic Map of Site

Hydrology Assessment

Figure 6: SB US 89 Culvert

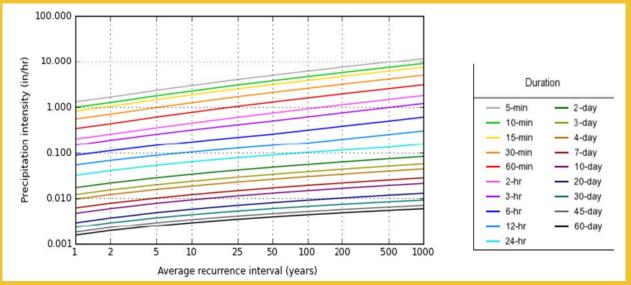


Figure 7: Precipitation Frequency on Site [2]

Time of Concentration

Table 5: Time of Concentration

Storm Event	Length (mi)	Kb	Slope (ft/mi)	Intensity(in/hr)	Tc (min)
10-year	1.353	0.2	327.42	0.063	33.22
100-year	1.353	0.2	327.42	0.101	27.77

Figure 8: Modified Watershed from USGS StreamStats [2]

Equation 1: Time of Concentration

$$T_c = 11.4(L^{0.5})(K_b^{0.52})(S^{-0.31})(i^{-0.38})$$

Tc=Time of Concentration (min) L=Length of Longest Flow Path (miles) Kb=Watershed Resistance Coefficient S=Slope of Longest Flow Path (ft/mile) i=Average Rainfall Intensity (in/hr)

Weighted Runoff Coefficient

Table 6: Weighted Runoff Coefficient

Weighted Runoff Coefficient							
Surface Type	Streets/Concrete	Clay Soils	Sandy Soil Lawn	Total			
	0.450		22.405	101.100			
Area (acres)	8.469	79.894	33.106	121.469			
Weight (%)	6.97	65.77	27.25	100			
Runoff Coefficient (C)	0.95	0.31	0.2	Cw = 0.32			

Equation 2: Weighted Runoff Coefficient

Cw=(∑CiAi)/Atot

Cw=Area Weighted Runoff Coefficient Ci=Runoff Coefficient for Specific Surface Type Ai=Area of Specific Surface Type (acres) Atot=Total Area (acres)

Runoff

Table 7: Peak Discharge

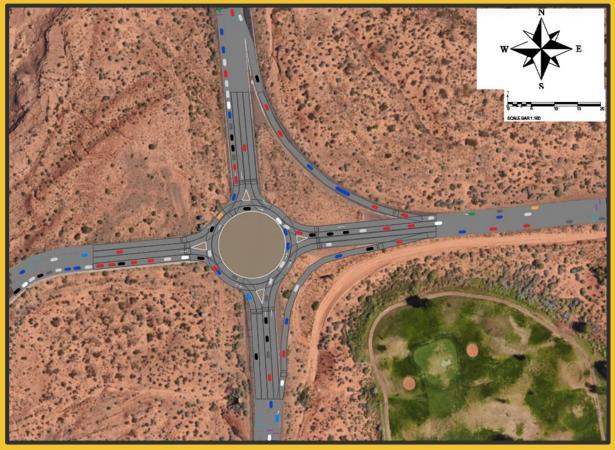
Discharge							
Storm Event	Weighted Runoff Coefficient (Cw)	Rainfall Intensity (in/hr)	Area (Acres)	Discharge (cfs)			
	¥						
10-year	0.32	0.063	121.469	2.439			
100-year	0.32	0.101	121.469	3.911			

Equation 3: Rational Equation

 Since the roundabout is designed to extend just outside of the original boundaries of the existing intersection, the runoff coefficient will not significantly change for pre and post development. Therefore, peak discharges derived from the rational method will be similar for pre and post development as well.

$$Q = C_w i A$$

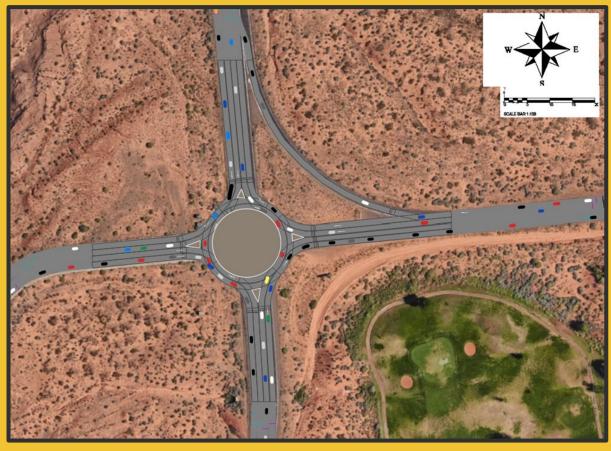
Q = Peak Discharge of Selected Return Period (cfs) C_w = Area Weighted Runoff Coefficient i = Average Rainfall Intensity (in/hr) A = Contributing Drainage Area (acres)


Roundabout Selection & Design

• VISSIM Models were created to analyze three alternative roundabout designs

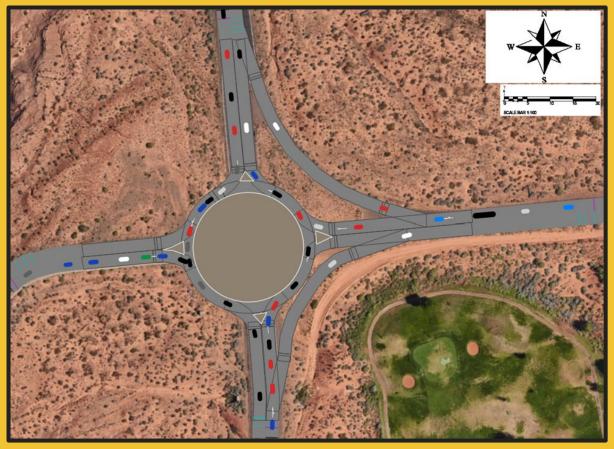
• The LOS was then determined for each alternative by utilizing the projected 20-year traffic volumes and evaluating results based on how each alternative performed in the VISSIM Model

• Parameters that affected LOS for each alternative include number of lanes, oncoming vehicle speeds, roundabout speeds, vehicle composition, and the relative flow of vehicles for each approach.


2-Lane 2-Slip Alternative

- 2 Lane with 2 Slip Lane Alternative
- Slip Lane 1 is from WB to NB traffic
- Slip Lane 2 is from NB to EB traffic

Figure 9: 2-Lane 2-Slip Alternative


2-Lane 1-Slip Alternative

- 2 Lane with 1 Slip Lane Alternative
- Slip Lane would be from WB traffic to NB traffic

Figure 10: 2-Lane 1-Slip Alternative

1-Lane-2-Slip Alternative

- 1 Lane with 2 Slip Lanes Alternative
- Slip Lane 1 is from WB to NB traffic
- Slip Lane 2 is from NB to EB traffic

Figure 11: 1-Lane 2-Slip Alternative

LOS Comparison of Each Alternative

Table 8: LOS Comparison

Legend	Legend		LOS B	LOS C	LOS D	LOS E	LOS F
Approach	Movement	2-lane 2-slip 2-lane 1-slip		1-lane 2-slip			
	Left						
	Thru						-
NB US 89	U						
	Right						
	Left						
SB US 89	Thru						
38 03 89	U						
	Right						
	Left						
WB N Lake Powell Blvd	Thru						
WB IN Lake Powell BIVG	U					24	
	Right						
	Left						
EB Scenic View Rd	Thru						
EB SCEILC VIEW RD	U						
	Right						
Average scor	е	1.	55	1.	68	3.	59

- Each Approach is reviewed & color coded based on its LOS determination
 - LOS A is ranked at a value of 1 and LOS F is ranked at a value of 6. The lower the final value, the better the LOS and quality of transportation services

Decision Matrix

		F	Raw Alternative	S	Weighted Alternatives		
Weighting Factor	Category & Criteria	2-lane 2-slip raw score	2-lane 1-slip raw score	1-lane 2-slip raw score	2-lane 2-slip weighted score	2-lane 1-slip weighted score	1-lane 2-slip weighted score
0.6	Level of Service (LOS)	3	3	1	1.8	1.8	0.6
0.2	Construction Costs	1	2	2	0.2	0.4	0.4
0.2	Maintenance Costs	2	3	3	0.4	0.6	0.6
	Total				2.4	2.8	1.6

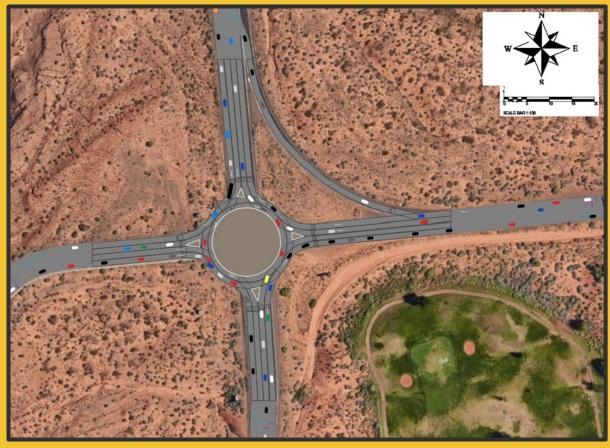
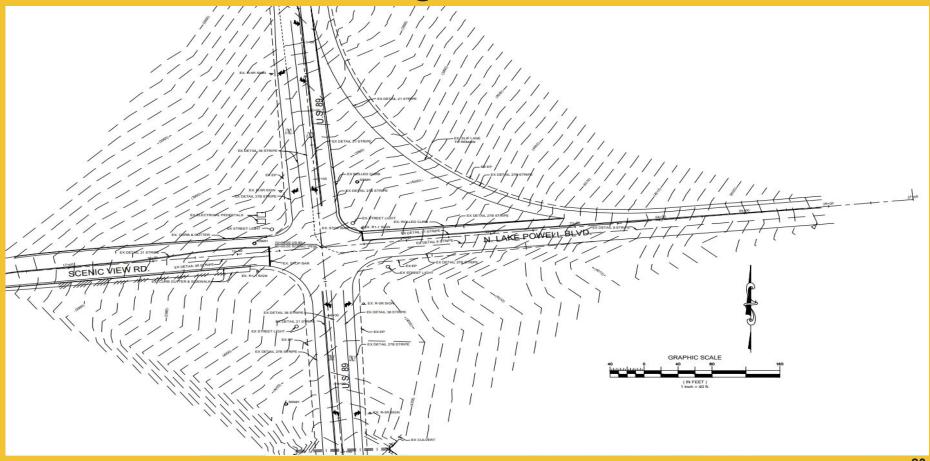
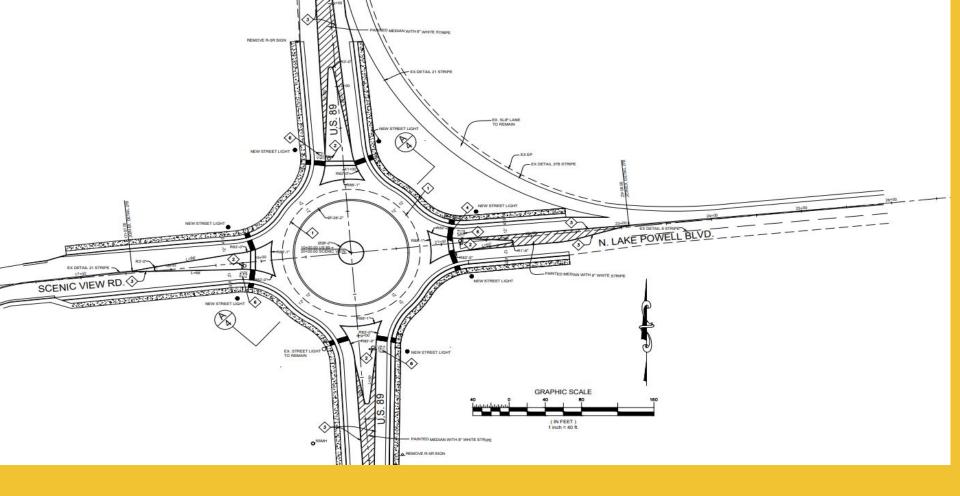

Table 9: Decision Matrix

Table 10: Modeling Values

Modeling Values	Level of Service (LOS)	Construction Costs	Maintenance Costs
1	E-F	\$1,500,000-\$2,000,000	≥ 5 Lanes
2	C-D	\$1,000,000-\$1,500,000	4 Lanes
3	A-B	\$500,000-\$1,000,000	3 Lanes

- A score of 3 is considered the best and a score of 1 is the worst
- Based on the Scoring Matrix created it was determined that Alternative 2 is the best feasible option


Selected Roundabout Design



 Best overall working design 2-Lane 1-Slip Roundabout

Figure 12: 2-Lane 1-Slip Alternative

Existing Intersection

Roundabout Configuration

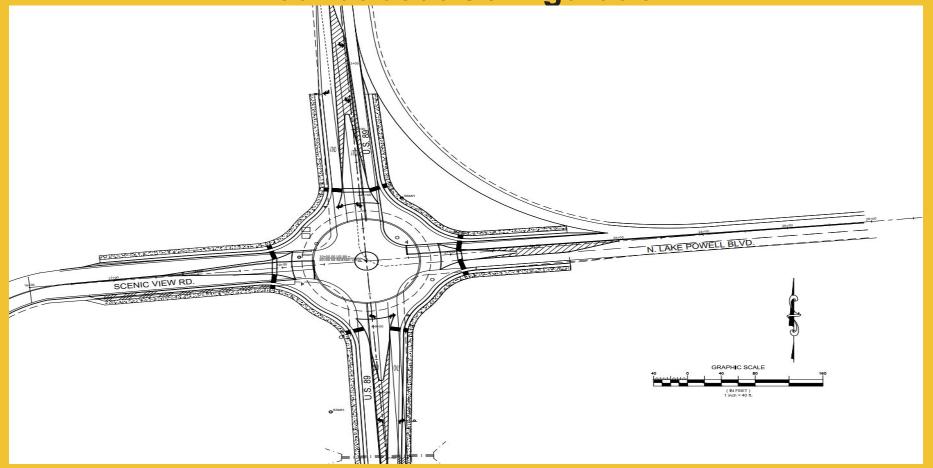
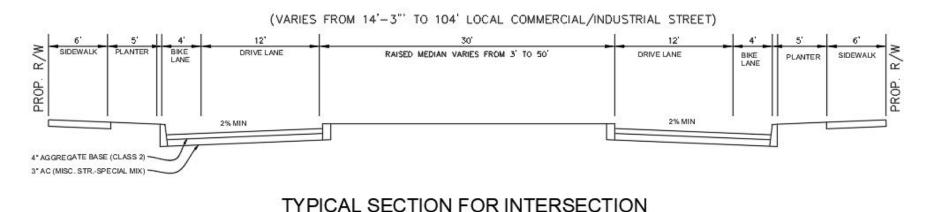



Figure 15: Roundabout Overlay of Existing Intersection

Typical Section of Roundabout Legs

N.T.S.

Figure 16: Roundabout Leg Section

Center Section Cut

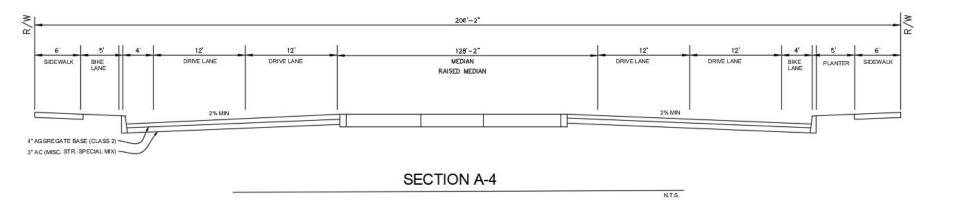


Figure 17: Roundabout Section

Project Impacts

Table 13: Impacts

Impacts	Social	Environmental	Economic
	Noise During Construction	Dust Pollution During Construction	The Initial Construction Cost is Expensive
Short Term	Traffic Congestion During Construction	Noise Made During construction	Sales of Surrounding Commercial Buildings are Affected
Long Term	Improved User Safety	Reduced Hydrocarbon Emissions	Reduce Economic Losses Caused by Collisions
	Improve the Travel Experience of Tourists	Reduced Vehicle Noise Pollution	Drive Local Economic Development

Construction Costs

Table 12: Construction Costs

Items	Quantity	Unit	Unit Cost	Total Cost		
Construction Staking	0.67	KM	\$778	\$521.26		
Clearing and Grubbing	0.09	HA	\$3,700	\$333.00		
Earthwork	- E					
Roadway Excavation	418	CY	\$3.32	\$1,387.76		
Drainage Excavation	766	CY	\$3.33	\$2,550.78		
Embankent	5953	CY	\$0.50	\$2,976.50		
Borrow Material	4769	CY	\$1.38	\$6,581.22		
Base and Surface Treatment						
Concrete Pavement	1382	SY	\$38.40	\$53,068.80		
Asphalt Pavement	1025	SY	\$23.80	\$24,395.00		
Structure (2)	900	SF EACH	\$49.58	\$89,244.00		
Traffic Engineering						
Signing	10	UNIT	\$25.00	\$250.00		
Lighting	20	UNIT	\$200.00	\$4,000.00		
Subtotal		\$185,308.32				
Overhead (10%)		\$18,530.83				
Total						

References

[1] "Soil Consistency," [Online]. Available: http://www.fao.org/fishery/docs/CDrom/FAO_Training/FAO_Training/General/x6706e/x6706e08.htm. [Accessed 19 September 2021].

[2] "USGS Streamstats," usgs.gov, [Online]. Available: https://streamstats.usgs.gov/ss/.

[3] Azdot.gov. 2021. [online] Available at: https://azdot.gov/sites/default/files/media/2021/01/2021-roadway-design-guidelines.pdf [Accessed 9 September 2021].

[4] Coconino.az.gov. 2021. [online] Available at:

<https://www.coconino.az.gov/DocumentCenter/View/25925/2021-Engineering-Design-and-Construction-Manual-EDCM?bidId=> [Accessed 9 September 2021].

[5] ADOT, 2020. [Online]. Available: https://azdot.gov/sites/default/files/media/2021/09/2020-AADT-USRoutes.pdf. [Accessed 19 9 2021].